White paper outline: Stakeholder integration: a response to a suggested focus on arctic residents and monitoring

Carina Kesktalo, Dieter Müller, Kristofer Bergh, Gerda Kinell, Tore Söderqvist, Sverker Sörlin

Introduction

Stakeholder integration on as wide and varying an area as the Arctic, on the topic of monitoring, will include almost all land uses and the very varying stakeholders in these. On the European side of the Arctic (if seen as an eight-state region rather than limited to ocean states) stakeholders will include the large majority of non-indigenous persons with long-term backgrounds in the areas, sectors from forestry to fishing (including both large- and small-scale interests) to the very small-scale but market-integrated sector of reindeer husbandry. Other examples will include tourism (large- and small-scale, winter and summer, in varying fields), potentially wind power, mining and also large municipal and region interests. Cross-cutting regional and local interests within any one country will also include (in northern Europe, large) service sectors and other large production areas than those related to natural resources. Northern Europe, just to take an example, is also a densely organizationally populated area, with conflicts between different land uses, and resultanty a very large body of formal (law and policy) and informal (practice) norms that determine what data also on land use is relevant (e.g. in relation to national assessment systems and law). Such considerations will impact what data is gathered and used and for what decision-support – and also what decision-support is relevant.

This paper outlines the diversity of stakeholders that may hold an interest in or be relevant in relation to observation systems, on multiple levels, and thereby attempts to outline the variety in potential groups. While the paper takes local and regional examples mainly from European cases, many of the considerations with relation to diversity will be relevant also in other regions (where also the differences between stakeholder groups such as local and indigenous can potentially be larger). The focus of the paper in this preliminary version has been formed largely by the orientations of the Swedish Mistra Arctic Futures programme author group listed above, and include a broad range of considerations ranging from military and international to local level.

International level stakeholders

With an increasingly accessible Arctic, the geopolitical reality of the region changes. The expectation of more human activity, and a perception that borders, which were previously protected by ice, has become more vulnerable, poses new challenges to military and law-enforcement. Militarization in the region is still on a low level, not least compared to the peak years of the Cold War and most observers agree that the Arctic is likely to remain peaceful in the foreseeable future (Wezeman 2012). Nevertheless, national defence establishments in the Arctic countries are increasingly recognizing their stakes in the region. The influence of several international defence organizations extends into the Arctic. The most prominent one being NATO, which include four out of five littoral states. NATO has struggled to define its role in the region because of lack of a common understanding of the added value among its member states (Bergh 2012). Canada for instance is
reluctant to give NATO a larger role, while Norway are more positive (Norwegian Government 2011). The fact that Russia is the only non-NATO littoral state also makes NATO’s presence in the region controversial, which has led to a generally low profile. Regional defence cooperation through such institutions as NORAD in North America and NORDEFCO in the Nordic countries also have a potential role to play in the Arctic.

Recently there have been efforts made to discuss issues of military security in a circumpolar setting, something that is not possible in the Arctic Council for instance. In April of 2012 the defence chiefs of the eight Arctic states met in Goose Bay, Canada to discuss challenges faced in the region (Canadian Ministry for Foreign Affairs and International Trade 2012). Another event that gathers military staff from all Arctic states has been the Arctic Security Forces Roundtable (ASFR), organized by the US European Command and the Norwegian government (Vandiver 2012). Both the Chiefs of defence meeting and the ASFR have the ambitions to institutionalize into annual events.

As challenges in the changing Arctic are likely to revolve more around safety and law-enforcement rather than hard security, a more prominent role for national coast guards is anticipated in the Arctic. In many of the Arctic countries coast guards are responsible for law-enforcement at sea, including border control and fishing regulation. In some cases they are also responsible for the national ice breaker fleets (Bergh 2012). Apart from the national coast guards of the Arctic states, the North Pacific and the North Atlantic Coast Guard Forums stand out as important stakeholders in the Arctic. These types of consideration could influence also monitoring.

While international level stakeholders are often different from the group that could be targeted in relation to arctic residents, some interests that may partly represent local level occupations or groups are also organized internationally. This includes for instance indigenous interests for Arctic areas, that are organized for instance in organisations represented in the Permanent Participant category of the Arctic Council, including for instance the ICC and the Saami Council. Local groups that are not indigenous are at this level assumed to be represented by the states, although it is recognized (for instance in the Permanent Participant category) that the state may not represent northern interests. Organisations that exist on an international level such as the Northern Forum explicitly recognize the need for regional representation on an international level, in order to forward broader regional concerns in relation to Arctic processes (Keskitalo 2004).

National level stakeholders

Many regional level organisations themselves conduct monitoring, often in cooperation with national agencies. In northernmost Europe, national monitoring systems are comparatively well developed; for a sector such as forestry which is relevant e.g. up to northernmost Sweden and Finland, this will mean that national monitoring systems exist, sometimes not entirely compatible across national contexts. National communities also exist among large-scale actors in different sectors. For smaller-scale actors (such as for instance individual forest owners), cooperation may mainly take place within regional forest owner associations. For instance, national and regional monitoring and organizational interests structures may thus be relevant to understand in order to start conceiving of differences between countries both in terms of interests, existing monitoring systems and potential needs.
Large national differences may also be expected. During the International Polar Year in 2007-2008 for instance Sweden started a national inventory of monitoring, noting that the relatively limited systematic nature of community based monitoring in northern Sweden but the potential that both relatively strong archival material that exist and potentially oral sources in terms of seasonal observations could come to add to data. As this issue has mainly risen on the agenda in a circumpolar scope as a result of the International Polar Year, monitoring is thus per se not well developed in the sense e.g. in Canada, which has largely relied on community based monitoring in northern areas. In Sweden, instead, a focus has been placed on formal data for instance glacier data and measuring stations such as Tarfala, which provide reliable time series data.

Local level stakeholders

Local level stakeholders encompass a very broad range of different interests and groups, organized in different ways. For monitoring, interests that in some way deal with the natural environment and changes in this in a regular fashion may be among the most relevant. An example of the complexity of use of e.g. model and/or monitoring (depending on time scale) climate change data can be taken from reindeer husbandry, which is an interest for which these considerations are valid.

For reindeer husbandry, studies have indicated that the selection of adaptations to climate change that are highlighted depend on which impacts influence economic production in the specific sector the most (Keskitalo 2008). Thus, adaptations are not made directly to (potential effects of) climate change at large, but to effects as they influence particularly economic viability of the sector. As a result are impacts that influence for instance grazing access in reindeer husbandry (such as icing-over of grazing due to winter thaw and re-freezing) emphasized – a factor highlighting issues that are perhaps not necessarily included in monitoring or modeling, such as number and severity of thaw events. On the other hand, in some areas may icing-over of grazing present a smaller problem, such as for instance if own hay is harvested or reindeer are kept in pens (such as in some cases in Finnish reindeer husbandry, not undertaken by Saami). If subsidies for buying fodder were higher in areas where winter thaw and fodder prices (in relation to availability both of alternative grazing and fodder) are both a concern, the issue of icing-over of pastures might also not be as emphasized.

Another case can be identified in tourism. Tourism is often seen as tool for regional development. Pedersen and Viken (1996) argue that the Arctic is increasingly transformed into a global playground for tourists and adventure seekers. However, interest in northern resources implies that tourism development has recently received less public attention (Müller, 2011). Moreover, land use conflicts arise not least with regards to exploitative industries. This is perceived as problem since also the destination image, currently based on wilderness imaginations, is at risk. Also stakeholders representing environmental protection interests are increasingly perceived as problematic. Regulations are seen as intrusion in local affairs and an underrating of local competence and stewardship (Müller, 2013b).

In this context it is relevant to note that tourism products are complex and co-produced by a variety of different stakeholders within but also outside the tourism industry. This means, too, that the industry is fragmented and motivations for entrepreneurship vary considerable. Hence strategies developed by public regional and local stakeholders are often not in line with individual
entrepreneurship causing chaotic rather than programmed development (Müller, 2011). Moreover, the fragmented characteristics of the tourism industry as well as the sometimes limited capacities and knowledge of involved stakeholder further challenge a positive development since demand markets are international mainly. Bridging the gap to national and international stakeholders is a major challenge facing northern tourism stakeholders.

Activities by tourism stakeholders as well as their potential to contribute are difficult to assess, as ready-made statistics are not available since tourism as an industry is usually not classified within national industrial classification systems. Additionally blurry definitions and varying limitations further complicate the matter. Instead so called tourism satellite accounts are chosen to assess the summarized shares of tourism related turnover within other industries (Meis, 2001). However estimates are often based on national averages and hence the role of tourism in Arctic communities is poorly understood (Müller & Ulrich, 2007). Therefore alternative approaches assemble the tourism industry by using a selection of branches based on national five digit SIC-codes (Lundmark, 2006; Müller, 2013a). Visitor and accommodation statistics are available widely but suffer often from poor quality. Not least independent tourists relying on private accommodation are not covered. Even more complex is the mapping of activities among tourism entrepreneurs in northern environments. Activities are usually not scheduled and land access permits seldom needed as long as activities are conducted outside protected areas. Instead factors like seasonal variations, individual tourists’ demand and weather conditions influence where and when tourism activities take place. This creates rather unforeseeable patterns and dynamics and thus, most evidence for land use is anecdotal. A large scale monitoring of tourism appears to be a difficult task owing to the volatile nature of the industry.

This underlines that the relevance of all monitoring and modeling data is determined for users in relation to socio-economic and political frameworks, and specific intersections of these e.g. in relation to practices in local or regional areas. Also, large variations among what may from the outside be seen as unified groups of similarity in interest may exist, for which different data may be relevant.

Discussion and conclusion

Understanding “arctic citizens” is thus too complex to properly do a large and abstract level, as multiplicities of different types of actors do exist, organized or not, in population centres ranging from very small scale to large towns and cities, and with the very differing interests outlined above. In each case related to observation in correspondence with stakeholder integration must thus questions include that of “observation for whom”? Organisational interests are by their nature interest groups and cannot be assumed to represent entirely even one specific sector – and by necessity not “arctic residents” at large or even in any one specific area. All different interests (organized or not) will have different problems for which monitoring data may or may not be possible to utilize – a question that requires knowledge on the specific uses to properly be answered. In addition, the different levels may have different concerns and needs depending on level at which they are active – local (highly varying groups), regional, national or international. Some areas in northern Europe, for instance, do not have the same community based observation tradition as for instance in Canada (see for instance Julie Cruikshank, Igor Krupnik).
Given these caveats, operational discussions of interests for “arctic residents” (e.g. to invite to a summit) may at a supra level need to relate to few selected established interest groups. It is paramount, however, to recognize that these do not represent “arctic residents” at large, and to keep in mind the broader picture in order to not design decision-support systems that relate only to one specific need. For instance, while policy recommendations can be developed that pertain to how to improve the situation e.g. for reindeer husbandry, any changes in land use policy and legislation will influence not only this sector but also all the other sectors and interests highlighted above, and the balance between these.

In designing systems for monitoring, economic tradeoffs are inevitable in relation to what costs are reasonable. From an economic sustainability perspective, resources should be used efficiently, which also applies on designing monitoring systems. This suggests taking into account not only financial effects but also economic effects in a broader sense, covering effects on human wellbeing such as health effects and changes in provision of ecosystem services. It is therefore crucial that economic assessments of the design of monitoring systems investigate how different designs might entail different benefits and costs and how they are distributed among various stakeholders. One way of ensuring that such a cost-benefit analysis is comprehensive enough is to involve stakeholders in the analytical process (Franzén et al., 2011). This serves as one component in a general strive for supporting agreement on action through collaborative planning for complex human-natural systems (Vignola et al., 2012). That is, economic assessments of monitoring system designs should include a mapping of stakeholders being affected or (potentially) contributing with observations as a basis for actively involving them in the analysis. The variety of stakeholders at different levels as outlined above implies that such a mapping might be challenging, in particular in cases when actors are not organized.

References

